Ganga Basin Sediment (GBS): A Potential Geological Reference Material for Tropical Rivers

Authors

  • Birbal Sahni Institute of Palaeosciences, Lucknow - 226 007
  • Birbal Sahni Institute of Palaeosciences, Lucknow - 226 007
  • Birbal Sahni Institute of Palaeosciences, Lucknow - 226 007
  • Birbal Sahni Institute of Palaeosciences, Lucknow - 226 007
  • Birbal Sahni Institute of Palaeosciences, Lucknow - 226 007

DOI:

https://doi.org/10.17491/jgsi/2024/173966

Keywords:

Standard reference material; Major oxides, Trace elements, and Rare earth elements; Sediment geochemistry; Clastic sediment; Himalayas; Large tropical rivers (LTR)

Abstract

The Himalayan river system (HRS) constitutes a major conduit for continental material transport to the adjacent oceans. The unresolved geological complexity and active tectonics of the Himalaya bring heterogeneity in sediment geochemistry. There is no known certified reference material (CRM) that represents the geochemical heterogeneity of HRS and large tropical rivers (LTR) though they rank first in terms of sediment transport and water discharge. As an ongoing exercise to develop reference material to calibrate the instruments and to validate the geochemical results, a river bedload sediment sample from the Ganga river basin (GBS) which is representative of both HRS and LTR was collected in sufficient quantity and characterized for its geochemical composition using inductively coupled plasma instrumentation techniques (ICP-OES and ICP-MS). The GBS has been analyzed for major, trace, and rare earth elements (REEs) to infer the homogeneity and suitability of geological material for reference material characterization through the test of reproducibility and representativeness. The precision of measurement (% RSD) within and across the four analytical sessions is less than < 7 % for most of the elements measured. The method is validated with respect to precision, limit of detection (LOD), limit of quantification (LOQ), and measurement uncertainties by analyzing CRMs. The concentration values of GBS are reproducible. The GBS composition also showed a good correlation with published datasets from the HRS and LTR. Thus, the GBS sample is developed as a potential matrix matching geological standard for geochemical studies of the Himalayan river sediments as well as other large tropical river systems.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2024-08-01

How to Cite

Khan, F. A., G.P., G., Muguli, T., Alam, M., & Sharma, A. (2024). Ganga Basin Sediment (GBS): A Potential Geological Reference Material for Tropical Rivers. Journal of Geological Society of India, 100(8), 1189–1199. https://doi.org/10.17491/jgsi/2024/173966

References

Ahmad, T., Khanna, P.P., Chakrapani, G.J. and Balakrishnan, S. (1998) Geochemical characteristics of water and sediment of the Indus river, Trans-Himalaya, India: constraints on weathering and erosion. Jour. Asian Earth Sci., v.16(2-3), pp.333-346. https://doi.org/10.1016/S07439547(98)00016-6

Allègre, C. J., Dupré, B., Négrel, P. and Gaillardet, J. (1996) Sr Nd Pb isotope systematics in Amazon and Congo River systems: constraints about erosion processes. Chem. Geol., v.131(1-4), pp.93-112. https://doi.org/10.1016/ 0009-2541(96)00028-9

Balaram, V. (1996) Recent trends in the instrumental analysis of rare earth elements in geological and industrial materials. Trends in Analytical Chemistry, v.15(9), pp.475-486. https://doi.org/10.1016/S01659936(96)00058-1

Balaram, V. and Subramanyam, K.S.V. (2022) Sample preparation for geochemical analysis: Strategies and significance. Advances in Sample Preparation, v.1, 100010. https://doi.org/10.1016/j.sampre.2022.100010

Berner, E.K. and Berner, R.A. (1996) Global environment: Water, air and geochemical cycles. Prentice Hall, Upper Saddle River, New Jersey, 376p.

Cascalho, J. and Fradique, C. (2007) Chapter 3 The Sources and Hydraulic Sorting of Heavy Minerals on the Northern Portuguese Continental Margin. Develop.Sedimentol., v.58(07), pp.75–110. https://doi.org/10.1016/ S0070-4571(07)58003-9

Dalai, T.K., Krishnaswami, S. and Kumar, A. (2003) Sr and 87Sr/86Sr in the Yamuna River system in the Himalaya: sources, fluxes, and controls on Sr isotope composition. Geochim. Cosmochim. Acta, v.67(16), pp.2931– 2948. https://doi.org/10.1016/S0016- 7037(03)00203-5

Dupre, B., Gaillardet, J., Rousseau, D. and Allegre, J. C. (1996) Major and trace elements of river-borne material: The Congo Basin. Geochim. Cosmochim. Acta v.60(8), pp.1301–1321. https://doi.org/10.1016/00167037(96)00043-9

Major and trace elements of river-borne material: The Congo Basin. Geochim. Cosmochim. Acta v.60(8), pp.1301–1321. https://doi.org/10.1016/00167037(96)00043-9

Datta, D.K. and Subramanian, V. (1998) Distribution and fractionation of heavy metals in the surface sediments of the Ganges-Brahmaputra-Meghna river system in the Bengal basin. Environ. Geol., v.36, pp.93-101. https:/ /doi.org/10.1007/s002540050324

Edmond, J.M. and Huh, Y. (1997) Chemical Weathering Yields from Basement and Orogenic Terrains in Hot and Cold Climates. Tectonic Uplift and Climate Change, pp.329–351. https://doi.org/10.1007/978-1-4615-59351_14

Galy, A., & France-Lanord, C. (1999) Weathering processes in the Ganges– Brahmaputra basin and the riverine alkalinity budget. Chem. Geol., v.159(1-4), pp.31-60. https://doi.org/10.1016/S0009-2541(99)000 33-9

Gansser, A. (1974) Himalaya. Geol. Soc., London, Spec. Publ., v.4, pp.267– 278. https://doi.org/10.1144/GSL.SP.2005.004.01.15

Gansser, A. (1981) The geodynamic history of the Himalaya. Zagros Hindu Kush Himalaya Geodynamic Evolution, v.3, pp.111-121. https://doi.org/ 10.1029/GD003p0111

Garzanti, E., Andó, S., France-Lanord, C., Censi, P., Vignola, P., Galy, V. and Lupker, M. (2011) Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga-Brahmaputra, Bangladesh). Earth Planet. Sci. Lett., v.302(1–2), pp.107–120. https://doi.org/10.1016/j.epsl.2010.11.043

Garzanti, E., Andò, S., France-Lanord, C., Vezzoli, G., Censi, P., Galy, V. and Najman, Y. (2010) Mineralogical and chemical variability of fluvial sediments. 1. Bedload sand (Ganga-Brahmaputra, Bangladesh). Earth Planet. Sci. Lett., v.299(3–4), pp.368–381. https://doi.org/10.1016/ j.epsl.2010.09.017

Gaillardet, J., Dupre, B., Allegre, C. J. and Négrel, P. (1997) Chemical and physical denudation in the Amazon River Basin. Chem. Geol., v.142(34), pp.141-173. https://doi.org/10.1016/S0009-2541(97)00074-0

Chemical and physical denudation in the Amazon River Basin. Chem. Geol., v.142(3-4), pp.141-173. https://doi.org/10.1016/S0009-2541 (97)00074-0

Goldstein, S. J. and Jacobsen, S. B. (1988) Rare earth elements in river waters. Earth Planet. Sci. Lett., v.89(1), pp.35–47. https://doi.org/10.1016/0012821X(88)90031-3

Govindaraju, K. (1994) 1994 compilation of working values and sample description for 383 geostandards. Geostandards Newsletter, v.18(2), pp.331-331. https://doi.org/10.1046/j.1365-2494.1998.53202081.x-i1

He, M., Zheng, H., Clift, P. D., Tada, R., Wu, W., & Luo, C. (2015) Geochemistry of fine-grained sediments in the Yangtze River and the implications for provenance and chemical weathering in East Asia. Progress in Earth and Planetary Science, 2(1), 1-20. https://doi.org/ 10.1186/s40645-015-0061-6

Hughes, M. G., Keene, J. B., & Joseph, R. G. (2000) Hydraulic sorting of heavy-mineral grains by swash on a medium-sand beach. Jour. Sediment. Res., 70(5), 994–1004. https://doi.org/10.1306/112599700994

ISO 11494 (2008) Jewellery – Determination of platinum in platinum jewellery alloys – Inductively coupled plasma (ICP) solution-spectrometric method using yttrium as internal standard element (first edition). International Organization for Standardization (Geneva), 5pp.

Kirby, E. and Whipple, K.X. (2012) Expression of active tectonics in erosional landscapes. Journal of Structural Geology, 44, 54-75. https://doi.org/ 10.1016/j.jsg.2012.07.009

Krishnaswami, S., Trivedi, J. R., Sarin, M. M., Ramesh, R., & Sharma, K. K. (1992) Strontium isotopes and rubidium in the Ganga-Brahmaputra river system: Weathering in the Himalaya, fluxes to the Bay of Bengal and contributions to the evolution of oceanic87Sr/86Sr. Earth and Planetary Science Letters, 109(1-2), 243-253. https://doi.org/10.1016/0012821X(92)90087-C

Li P. Q. and Zhang S. X. (1991) Neutron activation analysis and geochemistry research for 39 elements in surficial sediments of the lower reach and estuary of the Yellow River. I. Analysis method, elemental content and distribution. Acta Oceanologica Sinica 13(4), 507± 518 (in Chinese).

Lupker, M., France-Lanord, C., Lav´e, J., Bouchez, J., Galy, V., M´etivier, F., Gaillardet, J., Lartiges, B., Mugnier, J.L., (2011) A rouse-based method to integrate the chemical composition of river sediments: application to the ganga basin. J. Geophys. Res. Earth 116 (F4). https://doi.org/10.1029/ 2010JF001947.

Maharana, C., Srivastava, D., & Tripathi, J. K. (2018) Geochemistry of sediments of the Peninsular rivers of the Ganga basin and its implication to weathering, sedimentary processes and provenance. Chemical Geology, 483(July 2017), 1–20. https://doi.org/10.1016/j.chemgeo.

2018.02.019 Martin, J. M., and Meybeck, M. (1978) The content of major elements in the dissolved and particulate load of rivers, in Goldberg, E. D., ed., Biochemistry of Estuarine Sediments: UNESCO, p. 95-110.

Martin, J. M., & Meybeck, M. (1979) Elemental mass-balance of material carried by major world rivers. Marine chemistry, 7(3), 173-206. https:// doi.org/10.1016/0304-4203(79)90039-2

Meybeck, M., Friedrich, G., Thomas, R., Chapman, D. (1996) Rivers. In: Water quality assessments, a guide to the use of biota, sediments and water in environmental monitoring. CRC Press, London, pp 243– 318

Milliman, J. D., and Meade, R. H. (1983) World wide delivery of river sediments to oceans. Journal of Geology, 91(1), 1–21. http://www.boneandjoint.org.uk/highwire/filestream/13335/field_highwire_article_pdf/0/ 741.full-text.pdf

Muhs, D. R., Bettis III, E. A., & Skipp, G. L. (2018) Geochemistry and mineralogy of late Quaternary loess in the upper Mississippi River valley, USA: Provenance and correlation with Laurentide Ice Sheet history. Quaternary Science Reviews, 187, 235-269. https://doi.org/ 10.1016/j.quascirev.2018.03.024

Pang, H., Pan, B., Garzanti, E., Gao, H., Zhao, X., & Chen, D. (2018) Mineralogy and geochemistry of modern Yellow River sediments: Implications for weathering and provenance. Chemical Geology, 488, 7686. https://doi.org/10.1016/j.chemgeo.2018.04.010

Picouet, C., Dupre, B., Orange, D., & Valladon, M. (2002) Major and trace element geochemistry in the upper Niger river (Mali): physical and chemical weathering rates and CO2 consumption. Chem. Geol., 185, 93– 124. https://doi.org/10.1016/S0009-2541(01)00398-9

Ramesh, R., Ramanathan, A. L., Ramesh, S., Purvaja, R. and Subramanian, V. (2000) Distribution of rare earth elements and heavy metals in the surficial sediments of the Himalayan river system. Geochemical Jour., v.34(4), pp.295-319. https://doi.org/10.2343/geochemj.34.295

Rousseau, T.C., Roddaz, M., Moquet, J.S., Delgado, H.H., Calves, G., and Bayon, G. (2019) Controls on the geochemistry of suspended sediments from large tropical South American rivers (Amazon, Orinoco and Maroni). Chem. Geol., v.522, pp.38-54. https://doi.org/10.1016/ j.chemgeo.2019.05.027

Sarin, M.M., Krishnaswami, S., Dilli, K., Somayajulu, B.L.K. and Moore, W.S. (1989) Major ion chemistry of the Ganga-Brahmaputra river system: weathering processes and fluxes to the Bay of Bengal. Geochim. Cosmochim. Acta, v.53(5), pp.997-1009. https://doi.org/10.1016/00167037(89)90205-6

Seeber, L. and Gornitz, V. (1983) River profiles along the Himalayan arc as indicators of active tectonics. Tectonophysics, v.92(4), pp.335-367. https://doi.org/10.1016/0040-1951(83)90201-9

Singh, P. (2009) Major, trace and REE geochemistry of the Ganga River sediments: Influence of provenance and sedimentary processes. Chem. Geol., v.266(3–4), pp.242–255. https://doi.org/10.1016/j.chemgeo.2009.06.013

Singh, P. (2010) Geochemistry and provenance of stream sediments of the Ganga River and its major tributaries in the Himalayan region, India. Chem. Geol., v.269(3–4), pp.220–236. https://doi.org/10.1016/j.chemgeo.2009.09.020

Singh, S.K. and France-Lanord, C. (2002) Tracing the distribution of erosion in the Brahmaputra watershed from isotopic compositions of stream sediments. Earth Planet. Sci. Lett., v.202, pp.645–662. https://doi.org/10.1016/S0012-821X(02)00822-1.

Singh, S.K., Rai, S.K. and Krishnaswami, S. (2008) Sr and Nd isotopes in river sediments from the Ganga Basin: sediment provenance and spatial variability in physical erosion. Jour. Geophys. Res., Earth Surface, v.113 (F3), https://doi.org/10.1029/2007JF000909

Stallard, R.F. and Edmond, J.M. (1987) Geochemistry of the Amazon: 3. Weathering chemistry and limits to dissolved inputs. Jour. Geophys. Res.: Oceans, v.92(C8), pp.8293-8302. https://doi.org/10.1029/JC092iC08p08293

Subramanian, V., Van’t Dack, L. and Van Grieken, R. (1985) Chemical composition of river sediments from the Indian sub-continent. Chem. Geol., v.48, pp.271—279. https://doi.org/10.1016/0009-2541(85)90052-X

Subramanian, V., Van Grieken, R. and Van’t Dack, L. (1987) Heavy metals distribution in the sediments of Ganges and Brahmaputra rivers. Environ. Geol. Water Sci., v.9(2), pp.93-103. https://doi.org/10.1007/BF02449940

Valdiya, K.S. and Goel, O.P. (1983) Lithological subdivision and petrology of the Great Himalayan Vaikrita Group in Kumaun, India. Proc. Indian Acad. Sci. (Earth Planet. Sci.), v.92, pp.141–163.

Viers, J., Dupré, B. and Gaillardet, J. (2009) Chemical composition of suspended sediments in World Rivers: New insights from a new database. Sci. Total Environ., v.407(2), pp.853–868. https://doi.org/10.1016/j.scitotenv.2008.09.053

Zhang, C., Wang, L. and Zhang, S. (1998) Geochemistry of rare earth elements in the mainstream of the Yangtze River, China. Appl. Geochem., v.13(4), pp.451-462. https://doi.org/10.1016/S0883-2927(97)00079-6