Estimation of Spatial and Temporal Changes in the Net Primary Productivity of an Open Cast Mine in Dongri Buzurg, Maharashtra Utilizing Satellite-based CASA Model

Authors

  • School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur Kharagpur - 721 302
  • Department of Environmental Management, Indian Institute of Social Welfare and Business Management, Kolkata - 700 073
  • Department of Environmental Management, Indian Institute of Social Welfare and Business Management, Kolkata - 700 073
  • Department of Mining Engineering, Indian Institute of TechnologyKharagpur, Kharagpur - 721 302

DOI:

https://doi.org/10.17491/jgsi/2024/173958

Keywords:

NPP, waste-dump, remote sensing, open cast mine, CASA

Abstract

Open cast mining activities contributes to rapid change in vegetation dynamics and severe damage to ecological environment. Landuse and landcover (LULC) change in the opencast mining area can have significant impact on regional ecosystems and carbon cycle. In this study, LULC change dynamics is studied over an opencast Dongri Buzurg manganese mine in Maharashtra for the period 2014 to 2022. The area has experienced significant changes in LULC, making it critical to evaluate the environmental effect and suggest strategies for lowering its impact on net primary production (NPP). NPP was measured using remote sensing data from two satellite platforms (Sentinel 2A and MODIS) for the period 2014 to 2022. Simulated model such as the climate productivity model (Thornthwaite Memorial) was used to correlate satellite-derived NPP data. The spatial and temporal changes in NPP with respect to LULC were analyzed. Out of the total 78 km2 of area, 8.33 km2 of land has been converted which resulted in net reduction of NPP from 5.71 gC/m2/day (2014) to 4.45 gC/m2/day (2022) (H” 3.34 gG of net carbon lost into the atmosphere over a span of 8 years). The transformation of forest area to degraded land was the most significant contributor to NPP decline, accounting for 40.55% of overall NPP reduction. Based on the measured NPP results, a correlation analysis was performed with simulated NPP derived from the climate productivity model to understand the effectiveness of remote sensing data in NPP retrieval. Both S2A and MODIS data showed good agreement with that of the climate productivity model (R2 = 0.580 and 0.689 for MODIS derived NPP for the year 2014; R2 = 0.655 for Sentinel 2A derived NPP for the year 2022). These findings may serve as a guide for scientific evaluation of ecological losses due to mining and search for more effective and sustainable land reclamation techniques. Present study also demonstrates the application of finer resolution satellite data Sentinel 2A and MODIS for estimation of NPP. The findings might serve as a guide for further research into how mining affects local surroundings and for the investigation of more effective methods for land reclamation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2024-08-01

How to Cite

Shome, S. D., Chakraborty, S., Dhar, R. B., & Pathak, K. (2024). Estimation of Spatial and Temporal Changes in the Net Primary Productivity of an Open Cast Mine in Dongri Buzurg, Maharashtra Utilizing Satellite-based CASA Model. Journal of Geological Society of India, 100(8), 1101–1112. https://doi.org/10.17491/jgsi/2024/173958

References

Ahi, De., Gower, S.T., Mackay, D.S., Burrows, S.N., Norman, J.M. and Diak, G.R. (2005) The effects of aggregated land cover data on estimating NPP in northern Wisconsin. Rem. Sens. Environ., v.97(1), pp.1–14.

Ahmad, S., Pandey, A.C., Kumar, A., Lele N.V. and Bhattacharya B.K., (2022) Primary productivity estimation of forest based on in-situ biophysical parameters and sentinel satellite data using vegetation photosynthesis model in an eastern Indian tropical dry deciduous forest. Trop. Ecol., v.63, pp.409–422. https://doi.org/10.1007/s42965-02200220-6

Alexandrov, G. A. and Matsunaga, T. (2008) Normative Productivity of the Global Vegetation. Carbon Balance Manage., v.3, 8. https://doi.org/ 10.1186/1750-0680-3-8.

Allen, R.G., Pereira, L.S., Raes, D. and Smith, M. (1998) Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO—Food and Agriculture Organization of the United Nations Rome: Rome, Italy.

Bala, G., Joshi, J., Chaturvedi, R.K., Gangamani, H.V., Hashimoto, H. and Nemani. B. (2013) Trends and Variability of AVHRR-derived NPP in India. Rem. Sens., v.5, pp.810–829.

Balshi, M.S., McGuire, A.D., Duffy, P., Flannigan, M., Kicklighter, D. W. and Melillo J. (2009) Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century. Global Change Biology, v.15(6), pp.1491-1510, https://doi.org/10.1111/gcb.

Boelman, N.T., Stieglitz, M., Rueth, H.M., Sommerkorn, M., Griffin, K.L., Shaver, and G.R., Gamon, J.A. (2003) Response of NDVI, biomass, and ecosystem gas exchange to long-term warming and fertilization in wet sedge tundra. Oecologia, v.135, pp.414–421. https://doi.org/10.1007/ s00442-003-1198-3

Bourg, L. (2009) MERIS Level 2 Detailed Processing Model. ACRI-ST, Document No. PO-TN-MEL-GS-0006, 15 July 2009.

Bradford, J.B., Hicke, J.A. and Lauenroth, W.K. (2005) The relative importance of light-use efficiency modifications from environmental conditions and cultivation for estimation of large-scale net primary productivity. Rem. Sens. Environ., v.96 (2). https://doi.org/10.1016/j.rse.2005.02.013

Budreski, K.A., Wynne, R.H., Browder, J.O., and Campbell, J.B. (2007) Comparison of segment and pixel-based non-parametric land cover classification in the Brazilian Amazon using multitemporal Landsat TM/ ETM+ imagery. Photogramm. Eng. Rem. Sens., v.73(7), pp.813-827.

Cao, D.Y., Huang, C.L., Wu, J., Li, H.T., and Zhang, Y.D. (2012) Environment Carrying Capacity Evaluation of Coal Mining in Shanxi Province. In: Proceedings of the 1st International Conference on Energy and Environmental Protection (ICEEP 2012), Hohhot, China, 23–24 June 2012; p.1141

Congedo, L., (2016) Semi-Automatic Classification Plugin Documentation. https://doi.org/10.13140/RG.2.2.29474.02242/1

Dan, Li., Jinjun, Ji. and Yong, He. (2007) Use of ISLSCP II data to intercompare and validate the terrestrial net primary production in a land surface model coupled to a general circulation model. Jour. Geophys. Res. Atmos. v.112(D2).

DeFries, R.S., Field, C.B., Fung, I., Collatz, G.J. and Bounoua L (1999) Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity. Global Biogeochem. Cycles, v.13(3), pp.803–815

Dhar, R.B., Chakraborty, S., Chattopadhyay, R. and Sikdar P.K. (2019). Impact of Land-Use/Land-Cover Change on Land Surface Temperature Using Satellite Data: A Case Study of Rajarhat Block, North 24-Parganas District, West Bengal. Jour. Indian Soc. Remote. Sens. v.47, pp.331–348. https:// doi.org/10.1007/s12524-019-00939-1

Dong, G., Bai, J., Yang, S., Wu , L., Cai, W., Zhang, Y., Lou, Y., and Wang, Z (2015) The impact of land use and land cover change on net primary productivity on China’s Sanjiang Plain. Environ Earth Sci., v.74, pp.2907– 2917. https://doi.org/10.1007/s12665-015-4318-6

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., O. Sy, F. Marchese, and Bargellini P. (2012) Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Rem. Sens. Environ., v.120, pp.25-36, https://doi.org/10.1016/j.rse.2011.11.026.

Fang, P., Yan, N., Wei, P., Zhao, Y., and Zhang, X. (2021). Aboveground Biomass Mapping of Crops Supported by Improved CASA Model and Sentinel-2 Multispectral Imagery. Rem. Sens., v.13, pp. 2755. https:// doi.org/10.3390/rs13142755

Forkour, G., Dibobe, K., Serme, I. and Tondoh, J.E. (2018) Landsat-8 vs. Sentinel-2: examining the added value of sentinel-2’s red-edge bands to land-use and landcover mapping in Burkina Faso. GISci. Rem. Sens. v.55, pp.331-354

Goetz, S.J., Prince, S.D., Small J. and Gleason A.C.R. (2000) Interannual Variability of Global Terrestrial Primary Production: Results of a Model Driven with Satellite Observations. Jour. Geophys. Res.: Atmos. v.105, pp.20077–20091. https://doi.org/10.1029/2000JD900274.

Golubyatnikov, L.L., and Denisenko E.A. (2001) Modeling the values of net primary production for the zonal vegetation of European Russia. Bio. Bull. Russian Acad. Sci., v.28, pp.293-300.

Guo, W.B., Yu, X.Y., Wei, J.F., Tong, J.B., and Tian, X. J. (2014) Integrating operation study on mining and reclamation in Hulun Buir Grassland openpit mine area. Coal Eng, v.46, pp.143-145.

Hatfield, J.L., Asrar, G., Kanemasu, E.T. (1984). Intercepted photosynthetically active radiation estimated by spectral reflectance. Rem. Sens. Environ., v.14, pp.65-75

Hou, H., Zhang, S., Ding, Z., Gong, Y. and Ma, C. (2012) Study on the measurement of ecological loss based on the net primary productivity in coal mines. Jour. China Coal Soc., v.37, pp.445–451

Jagriti, D, Mondal, S. and Thapar, S. (2023). Application of geospatial technology for assessment of agricultural residue based renewable energy potential in Punjab, India. Eneg. Sust. Develop. v.72, pp.340-350.

Jiang, H., Fan, G., Zhang, D., Zhang, S. and Fan, Y. (2022) Evaluation of ecoenvironmental quality for the coal-mining region using multi-source data. Sci. Rep. v.12, pp.6623.

Krishna, D.K., Watham, T., Padalia, H., Srinet, R. and Nandy, S., (2023) Improved gross primary productivity estimation using semi empirical (PRELES) model for moist Indian sal forest. Ecological Modelling, v.475, pp.110175.

Kruse, F.A., Lefkoff, A.B., Boardman, J.W., Heidebrecht, K.B., Shapiro, A.T., Barloon, P.J., Goetz, A.F.H. (1993) The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data. Rem. Sen. Environ., v.44(2-3), pp.145-163. https://doi.org/10.1016/ 0034-4257(93)90013-N

Kumar, M. and Monteith J. L. (1981) Remote Sensing of Crop Growth. In: H. Smith (Ed.), Plants and the Daylight Spectrum, pp.133–144. Boston: Academic Press.

Kumar, V., Bharti, B., Singh, H.P., Kumar, H. and Kujur, S.P., (2023) Identification of Environmental Epidemiology Through Advanced Remote Sensing Based on NDVI. Advanced Remote Sensing for Urban and Landscape Ecology Singapore: Springer Nature, pp.129-142.

Kwon, Y. and Larsen, C.P.S. (2013) Effects of Forest Type and Environmental Factors on Forest Carbon Use Efficiency Assessed Using MODIS and FIA Data across the Eastern USA. Inter. Jour. Rem. Sens. v.34, pp. 8425– 8448. https://doi.org/10.1080/01431161.2013.838711.

Li, G., Wu, C., Chen, Y., Huang, C., Zhao, Y., Wang, Y. and Tang, X. (2023) Increasing temperature regulates the advance of peak photosynthesis timing in the boreal ecosystem. Sci. Total Environ., v.882, 163587.

Li, A., J. Bian., G. Lei, and C. Huang. (2012) Estimating the Maximal Light Use Efficiency for Different Vegetation through the CASA Model Combined with Time-Series Remote Sensing Data and Ground Measurements. Rem. Sens. v.4, pp.3857–3876. https://doi.org/10.3390/ rs4123857.

Li, Bo., Xu, Xiangming., Zhang, Li., Han, Jiwan., Bian, Chunsong., Li, Guangcun., Liu, Jiangang, and Jin, Liping. (2020) Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging. ISPRS Jour. Photo Rem. Sens., v.162, pp.161172. https://doi.org/10.1016/j.isprsjprs.2020.02.013.

Lieth, H. and Whittaker R. H. (1975) Modeling the Primary Productivity of the World. In: H. Lieth and R.H. Whittaker (Eds.), Primary Productivity of the Biosphere, pp.237–263. New York: Springer-Verlag.

Lin, S., Li, J., Liu, Q., Li, L., Zhao, J. and Yu, W. (2019) Evaluating the Effectiveness of Using Vegetation Indices Based on Red-Edge Reflectance from Sentinel-2 to Estimate Gross Primary Productivity. Rem. Sens., v.11, pp.1303. https://doi.org/10.3390/rs11111303

Liu, B., Chen, X., Meng, Q., Yang, H., and Wart J.V. (2017) Estimating maize yield potential and yield gap with agro-climatic zones in China— Distinguish irrigated and rainfed conditions. Agri. For. Meteo., v.239, pp.108–17.

Liu, W.Q., and Chen, G.Z. (2021) Evolution of Ecosystem Service Value and Ecological Storage Estimation in Huainan Coal Mining Area. Bull. Environ. Contam. Toxicol. v.107, pp.1243–1249.

Liu, Y. H., W. J. Quan, and Y. H. Gao. (2010) Net Primary Production and Its Spatiotemporal Pattern in North China. Jour. Natu. Res., v.25, pp.564– 573.

Liyi, S., Mingyang, Li., Hai, Xu., Ying, G., Zi, Wang., Yingchang, Li., Xuejuan, Wu., Luchun, Feng., Jun, Chen, Xin, Lu, Yanxin, Xu, Tao, Li. (2010) Spatiotemporal variation and driving factors of vegetation net primary productivity in a typical karst area in China from 2000 to 2010. Ecol. Indi., v.132, pp.108-128.

Loeb, N.G., Doelling, D.R., Wang, H., Su, W., Nguyen, C., Corbett, J.G., Liang, L., Mitrescu, C., Rose, F.G. and Kato, S. (2018) Clouds and the earth’s radiant energy system (CERES) energy balanced and filled (EBAF) topofatmosphere (TOA) edition-4.0 data product. Jour. Climate, v.31(2), pp.895-918.

Luck, G.W. (2007) The relationships between net primary productivity, human population density and species conservation. Jour. Biogeogr., v.34(2), pp.201–212

Luo, Y. and Wang, C.L. (2009) Valuation of the Net Primary Production of Terrestrial Ecosystems in Guangdong Province Based on Remote Sensing. Ecol. Environ. Sci., v.18, pp.1467–1471.

Luo, Z., Wu, W., Yu, X., Song, Q., Yang, J., Wu, J. and Zhang, H., (2018) Variation of net primary production and its correlation with climate change and anthropogenic activities over the Tibetan Plateau. Rem. Sens., v.10(9), pp.1352.

McCallum, I., W. Wagner, C. Schmullius, A. Shvidenko, M. Obersteiner, S. Fritz, and S. Nilsson. (2009) Satellite-Based Terrestrial Production Efficiency Modeling. Carbon Balance and Management, v.4, pp.8. https:/ /doi.org/10.1186/1750-0680-4-8

Melillo, J.M., Mcguire, A.D., Kickliighter, W.D., Moore, B., Vorosmarty, C.J. and SchlossA.L. (1993) Global Climate Change and Terrestrial Net Primary Production. Nature v.363, pp.234–240. https://doi.org/10.1038/363234a0

Miettinen, J., Carlier, S., Häme, L., Mäkelä, A, Minunno, F., Penttilä, J., Pisl, J., Rasinmäki, J., Rauste, Y., Seitsonen, L., Tian, X. and Häme, T. (2021) Demonstration of large area forest volume and primary production estimation approach based on Sentinel-2 imagery and process-based ecosystem modelling. Int. Jour. Rem. Sens. v.42(24), pp. 94679489, https://doi.org/10.1080/01431161.2021.1998715

Monteith, J. L. (1972) Solar Radiation and Productivity in Tropical Ecosystems. Jour. Appl. Ecol., v.9, pp.747–766. https://doi.org/10.2307/2401901.

Monteith, J. L., and C. J. Moss. (1977) Climate and the Efficiency of Crop Production in Britain. Philos. Trans. Royal Soc.London, v.281, pp.277– 294.

Oke, T.R. (1987) Boundary-Layer Climates, 2nd ed.; Methuen and Company: London, UK, pp.1–460.

Parton, W.J., McKeown, B., Kirchner, V. and Ojima, D.S. (1992) CENTURY User’s Manual. Fort Collins, CO: Colorado State University, NREL Publication.

Parton, W.J., Schimel, D.S., Cole, C.V. and Ojima, D.S. (1987) Analysis of Factors Controlling Soil Organic Matter Levels in Great Plains Grasslands. Soil Sci. Soc. Amer. Jour., v.51, pp.1173–1179. https://doi.org/10.2136/ sssaj1987.03615995005100050015x.

Paul, G.C. and Saha, S. (2023) Measuring the crop water demand and satisfied degree using remote sensing data and machine learning method in monsoon climatic region, India. Environ. Sci. Pollut. Res., pp.1-16.

Pei, F., Li, Xia., Liu, Xiaoping, Wang, Shujie, and He, Zhijian (2013) Assessing the differences in net primary productivity between pre- and post-urban land development in China. Agri. For. Meteorolo. v.171-172, pp.174-186, https://doi.org/10.1016/j.agrformet.2012.12.003

Potter, C., Klooster, S. and Genovese, V. (2012) Net Primary Production of Terrestrial Ecosystems from 2000 to 2009. Clim. Chan. v.115(2), pp.365– 378. https://doi.org/10.1007/s10584-012-0460-2.

Potter, C., Klooster, S., Myneni, R., Genovese, V., Tan, P.N. and Kumar, V. (2003) Continental-Scale Comparisons of Terrestrial Carbon Sinks Estimated from Satellite Data and Ecosystem Modeling 1982–1998. Glob.

Plan. Change, v.39, pp.201–213. https://doi.org/10.1016/j.gloplacha.2003.07.001.

Prince, S.D., and Goward, S. J. (1995) Global Primary Production: A Remote Sensing Approach. Jour. Biogeog. v.22, pp.316–336. https://doi.org/ 10.2307/2845983.

Propastin, P.A., Kappas, M.W., Herrmann, S.M. and Tucker C.J. (2012) Modified light use efficiency model for assessment of carbon sequestration in grasslands of Kazakhstan: combining ground biomass data and remote-sensing. Int. Jour. Rem.Sens., v.33(5), pp.1465-1487, https://doi.org/10.1080/01431161.2011.577105

Quaife, T., Quegan, S., Disney, M., Lewis, P., Lomas, M. and Woodward, F.I. (2008) Impact of land cover uncertainties on estimates of biospheric carbon fluxes. Global Biogeochem Cycles, v.22(40), pp. GB4016. https://doi.org/ 10.1029/2007GB003097

Raich, J.W., Rastetter, E.B., Melillo, J.M., Kicklighter, D.W., Steudler, P.A., Peterson, B.J., Grace, A.L., Moore III, B. and Vorosmarty, C.J. (1991) Potential Net Primary Productivity in South America: Application of a Global Model. Ecol. Appl., v.1, pp.399–429. https://doi.org/10.2307/ 1941899.

Rajput, A.K., Rajesh, T.K. and Atul, S. (2012) Utility base estimated solar radiation at destination Pune, Maharashtra, India. Int. Jour. Pur. Appl. Sci. Tech., v.13 (1), pg.19.

Ranjan, A. K., Parida, B. R., Dash, J., and Gorai, A. K. (2023) Evaluating Impacts of Opencast Stone Mining on Vegetation Primary Production and Transpiration over Rajmahal Hills. Susta., v.15(10), pp.8005.

Rastetter, E.B., Ryan, M.G., Shaver, G.R., Melillo, J.M., Nadelhoffer, K.J., Hobbie, J.E. and Aber, J.D. (1991) A General Biogeochemical Model Describing the Responses of the C and N Cycles in Terrestrial Ecosystems to Changes in CO2, Climate, and N Deposition. Tree Physiology, v.9, pp.101-126. https//doi.org/10.1093/treephys/9.1-2.101.

Raza, S.M. Hassan, and Syed A Mahmood. (2018) Estimation of net rice production through improved CASA model by addition of soil suitability constant (‘á). Sustainability, v.10(6), 1788.

Running, S.W., and E. R. Hunt Jr. (1993) Generalization of a Forest Ecosystem Process Model for Other Biomes, BIOME-BGC, and an Application for Global Scale Models. In: J.R. Ehleringer and C.B. Field (Eds.), Scaling Physiological Processes: Leaf to Globe, pp.141–158.

San Diego: Academic Press Running, S.W., Loveland, T.R. and Pierce, L.L. (1994) A vegetation classification logic based on remote sensing for use in global scale biogeochemical models. Ambio, v.23, pp.77-81.

Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A. and Skakun. S. (2017) Exploring Google Earth Engine Platform for Big Data Processing: Classification of Multi-Temporal Satellite Imagery for Crop Mapping. Front. Earth Sci., pp. 5-17.

Srikanta S (2017). Modeling terrestrial ecosystem productivity of an estuarine ecosystem in the Sundarban Biosphere Region. India using seven ecosystem models. Ecolo. Mod., v.356, pp.73-90

Sun, J., Yue, Y. and Niu, H. (2021) Evaluation of NPP using three models compared with MODIS NPP data over China. PLoS ONE v.16(11). https:/ /doi.org/10.1371/journal.pone.0252149

Tang, C. J., Fu, X.Y., Jiang, D., Fu, J.Y., Zhang, X.Y. and Zhou, S. (2014) Simulating Spatiotemporal Dynamics of Sichuan Grassland Net Primary Productivity Using the CASA Model and in situ Observations. The Sci. Wor. J. pp.1–12. doi:10.1155/2014/956963.

Ting, L. (2013) Dynamic monitoring and analysis of ecological environment in open-pit mining area of Pingshuo coal mine. China Acad. Jour. Electron. Publ. House.

Ussiri, D.A.N. and Lal, R. (2005) Carbon sequestration in reclaimed minesoils. Crit. Rev. Plant Sci., v.24, pp.151–165.

Bejagam, Vijaykumar, and Ashutosh Sharma (2022) Impact of climatic changes and anthropogenic activities on ecosystem net primary productivity in India during 2001–2019. Ecological Informatics, v.70, 101732.

Wang, X., Tan, K., Chen, B., and Du, P. (2017) Assessing the spatiotemporal variation and impact factors of net primary productivity in China. Scientific Reports, v.7(1), 44415.

White, M.A., Thornton, P.E., Running, S.W. and Nemani, R.R. (2000) Parameterization and Sensitivity Analysis of the BIOME–BGC Terrestrial Ecosystem Model: Net Primary Production Controls. Earth Interactions, v.4(3), pp.1–85.

William, J.F., Jadunandan, D., Gary W., Edward, J.M. (2018) Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS Jour. Photo. Rem. Sens.v.82, pp.83-92

Williams, J.W., Seabloom, E.W., Slayback, D., Stoms, D.M., Viers, J.H. (2005) Anthropogenic impacts upon plant species richness and net primary productivity in California. Ecol. Lett., v.8(2), pp.127–137

Xie, T.T., Li, G., Zhou, G.Y., Wu, Z.M., Zhao, H.B., Qiu, Z.J. and Liang, R.Y. (2013) Aboveground biomass of natural Castanopsis carlesii-Schima superba community in Xiaokeng of Nanling Mountains, South China.

Ying Yong Sheng Tai Xue Bao. v.Sep.24(9), pp. 2399-407. Chinese. PMID: 24417094.

Xu, C., Liu, M., An, S., Chen, J.M. and Yan, P. (2007) Assessing the impact of urbanization on regional net primary productivity in Jiangyin County, China. Jour. Environ. Manag. v.85(3), pp.597–606

Xu, J., Liu, Z., Song, L. and Hu, Y. (2012) Evaluation on Ecological Services of Urban Green Space in Guangzhou City of South China Based on Remote Sensing. Chin. Jour. Eco. (Chinese with Abstract in English) v.31, pp.440–445.

Xu, Z., Hou, H., Zhang, S., Ding, Z., Ma, C., Gong, Y. and Liu, Y. (2012) Effects of mining activity and climatic change on ecological losses in coal mining areas. Trans. Chin. Soc. Agric. Eng., v.28, pp.232–240.

Xu, W., Wang, J., Zhang, M. and Li, S., (2021) Construction of landscape ecological network based on landscape ecological risk assessment in a large-scale opencast coal mine area. Jour. Cleaner Prod., v(286), 125523.

Yuan, Z., Wang, Y., Xu, J., and Wu, Z. (2021) Effects of climatic factors on the net primary productivity in the source region of Yangtze River, China. Scientific Reports, v.11(1), pp.1376.

Zhenhua, Liu., Manqin, Hu., Yueming, Hu and Guangxing, Wang (2018) Estimation of net primary productivity of forests by modified CASA models and remotely sensed data. Inter. Jour. Rem. Sen., v.39(4), pp.1092-1116, https://doi.org/10.1080/01431161.2017.1381352.

Zhou, C.P., Ouyang, H., Wang, Q.X., Du, B. and Sun, Q. (2004). Estimation of Net Primary Productivity in the Northern Tibet Plateau by Using Remote Sensing. Acta GeographicaSinica (Chinese with Abstract in English) v.59, pp.74–79

Zhou, G.S. and Zhang, X.S. (1995) A Natural Vegetation NPP Model. Acta PhytoecologicalSinica (Chinese with Abstract in English) v.19, pp.193–200.

Zhang, X., Xiao, W., Wang, Y., Wang, Y., Wang, H., Wang, Y., Zhu, L. and Yang, R., (2020) Spatial-temporal changes in NPP and its relationship with climate factors based on sensitivity analysis in the Shiyang River Basin. J Earth Syst Sci v.129 (24), pp.1-13. https://doi.org/10.1007/s12040-019-1267-6

Zhou, W., Sun, Z.G., Jianlong, L.I., Gang, C.C. and Zhang, C.B. (2013) Desertification dynamic and the relative roles of climate change and human activities in desertification in the Heihe River Basin based on NPP. Jour. Arid Land., v.5(004), pp.465–79.

Zhu, W.Q., Pan, Y.Z. and Zhang, J.S. (2007) Estimation of Net Primary Productivity of Chinese Terrestrial Vegetation Based on Remote Sensing. Jour. Plant Ecol. (Chinese with Abstract in English) v.31, pp.413–424.

Zika, M. and Erb, K.H. (2009) The global loss of net primary production resulting from human-induced soil degradation in drylands. Ecol. Econ., v.69(2), pp.310–318