Petrogenesis and Geochemical Evolution of Dhauladhar and Dalhousie Granites, NW Himalayas

Authors

  • Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee – 247 667
  • Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee – 247 667

DOI:

https://doi.org/10.1007/s12594-019-1194-9

Keywords:

No keywords

Abstract

Whole rock geochemical analysis has been carried out on samples from Dhauladhar and Dalhousie granites of the northwestern region of Himalayas. The mineral assemblage of these granites is K-feldspar, plagioclase, and biotite, with Dhauladhar granite being richer in plagioclase and biotite than the Dalhousie granites. The Dhauladhar granites are mostly coarse to mediumgrained porphyritic, variably mylonatized and biotite bearing whereas, the Dalhousie granites are fine-grained two-mica granites. The silica-rich (SiO2=64-72 wt %) Dhauladhar granites have a potassic (K2O/Na2O< 0.9-1.8) and peraluminous (A/CNK=1.03- 1.3) character. Dalhousie granites show a similar character, albeit to a different degree (SiO2=69-74 wt %), (K2O/Na2O < 1.1-1.5) , (A/CNK=1.3-1.7). The Dalhousie granites are richer in, U, Th, and LREE, yet extremely depleted in Sr, Ba, Nb. They have flatter REE patterns with comparatively strong Eu anomaly (Eu/Eu*= 0.02-0.04). The Rb/Ba vs Rb/Sr and CaO/Na2O vs Al2O3/TiO2 ratios indicate sedimentary source with the psammitic nature for Dhauladhar and pelitic nature for Dalhousie granites. However, the Eu/Eu* value indicates that plagioclase abundance is greater in Dhauladhar granites than in Dalhousie granites. The present study suggests that Dalhousie granites being more evolved than Dahuladhar granites.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Issue

Section

Research Articles

Published

2019-04-20

How to Cite

Dhiman, R., & Singh, S. (2019). Petrogenesis and Geochemical Evolution of Dhauladhar and Dalhousie Granites, NW Himalayas. Journal of Geological Society of India, 93(4), 399–408. https://doi.org/10.1007/s12594-019-1194-9

References

Allegre, C.J. and Minster, J.F. (1978) Quantitative models of trace element behavior in magmatic processes. Earth Planet. Sci. Lett., v.38(1), pp.1- 25.

Bea, F., Montero, P. G., Gonzalez-Lodeiro, F., Talavera, C., Molina, J. F., Scarrow, J. H., ... and Zinger, T. (2006) Zircon thermometry and U–Pb ion-microprobe dating of the gabbros and associated migmatites of the Variscan Toledo Anatectic Complex, Central Iberia. Jour. Geol. Soc. London, v.163(5), 847-855

Bhatia, G.S. and Kanwar, R.C. (1973) Mylonitization in outer Granite Band of Dalhousie, Himachal Pradesh. Himalayan Geol., v.3 pp.103-115

Bhatia, G.S. (1975) Contribution to the Geology of Dalhousie Chamba area Himachal Pradesh, India.

Cawood, P.A., Johnson, M.R. and Nemchin, A.A. (2007) Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly. Earth Planet. Sci. Lett., v.255(1-2), pp.70-84. doi: 10.1016/j.epsl.2006.12.006.

Chappell, B.W. and White, A.J.R. (1992) I-and S-type granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, v.83(1-2), pp.1-26. doi:10.1017/S0263593 300007720

Chappell, B.W. and White, A.J. (2001) Two contrasting granite types: 25 years later. Australian Jour. Earth Sci., v.48(4), pp.489-499. doi:10.1046/j.14400952.2001.00882.x

Chaudhri, N. (1996) Geochemistry and petrogenesis of the Palampur Granitoids, Dhauladhar range, northwestern Himalaya, India. Chemie Der Erde -Geochemistry, v.56(1), pp.25-43.

Clemens, J.D. (2003) S-type granitic magmas”petrogenetic issues, models and evidence. Earth-Science Rev., pp.61(1-2), pp.1-18.

Clemens, J.D. and Stevens, G. (2012) What controls chemical variation in granitic magmas?. Lithos, v.134, pp.317-329. doi:10.1016/j.lithos.2012.01.001

Collins, W. J. and Sawyer, E.W. (1996) Pervasive granitoid magma transfer through the lower–middle crust during non coaxial compressional deformation. Jour.Metamor. Geol., v.14(5), doi:10.1046/j.15251314.1996.00442.x

Conrad, W.K., Nicholls, I.A. and Wall, V.J. (1988) Water-saturated andundersaturated melting of metaluminous and peraluminous crustal compositions at 10 kb: evidence for the origin of silicic magmas in the Taupo Volcanic Zone, New Zealand, and other occurrences. Jour.Petrol., v.29(4), pp.765-803.

DeCelles, P. G., Gehrels, G. E., Quade, J., LaReau, B. and Spurlin, M. (2000) Tectonic implications of U-Pb zircon ages of the Himalayan orogenic belt in Nepal. Science, v.288(5465), pp.497-499.

DePaolo, D. J. (1981). Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planetary Sci.Lett., v.53(2), 189-202.

Frank,W., Thoni, M. and Purtscheller, F. (1977) Geology and petrography of Kullu-South Lahul area. – Colloques Internationaux du C.N.R.S., v. 286, pp.147–172.

Frost, B.R. and Frost, C.D. (2013) Essentials of igneous and metamorphic petrology. Cambridge University Press

Gao, L.E. and Zeng, L. (2014) Fluxed melting of metapelite and the formation of Miocene high-CaO two-mica granites in the Malashan gneiss dome, southern Tibet. Geochim. Cosmochim. Acta, v.130, pp.136-155.

Harris, N.B.W. and Inger, S. (1992) Trace element modelling of pelite-derived granites. Contrib. Mineral. Petrol., v.110(1), 46-56. doi:10.1007/BF00310 Healy, B., Collins, W.J. and Richards, S.W. (2004) A hybrid origin for Lachlan S-type granites: the Murrumbidgee Batholith example. Lithos, v.78(1-2), pp.197-216. doi:10.1016/j.lithos.2004.04.047

Holtz, F., Behrens, H., Dingwell, D.B. and Taylor, R.P. (1992) Water solubility in aluminosilicate melts of haplogranite composition at 2 kbar. Chemical Geol., v.96(3-4), pp.289-302.

Holtz, F. and Johannes, W. (1994) Maximum and minimum water contents of granitic melts: implications for chemical and physical properties of ascending magmas. Lithos, v.32(1-2), 149-159. doi:10.1016/00244937(94)90027-2

Inger, S. and Harris, N. (1993) Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya. Jour. Petrol., 34(2), pp.345-368. doi:10.1093/petrology/34.2.345.

Irber, W. (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu”, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim. Cosmochim. Acta, v.63(3-4), pp.489-508.

Irvine, T. N. J. and Baragar, W.R.A. (1971) A guide to the chemical classification of the common volcanic rocks. Canadian Jour. Earth Sci., v.8(5), pp.523-548.

Jung, S. and Pfander, J. A. (2007) Source composition and melting temperatures of orogenic granitoids: constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry. European Jour. Mineral., v.19(6), pp.859-870. doi:10.1127/0935-1221/2007/0019-1774

Kemp, A.J. and Hawkesworth, C.J. (2003) Granitic Perspectives on the Generation and Secular Evolution of the Continental Crust. In: R.L. Rudnick (Ed.), The Crust (Treatise on Geochemistry, Vol 3) (pp. 349 410). Amsterdam: Elsevier.

Kansal, A. K., Singh, V. P., Anupam, K., & Bhanot, V. B. (2003) Rb-Sr isotopic and geochronological studies of the granitic rocks of Dalhousie area, Himachal Pradesh. In: ISMAS silver jubilee symposium on mass spectrometry. V.2: contributed papers.

Lahoti, S., Kumud, K., Gupta, Y. and Jain, A.K. (2017) Tectonics of the Chamba Nappe, NW Himalaya and its regional implications. Italian Jour.Geosci., v.136, pp.50-63. doi: 0.3301/IJG.2015.39

Le Fort, P. (1983) The lower Paleozoic "Lesser Himalayan” granitic belt: emphasis on the Simchar pluton of Central Nepal. Granites of Himalayas, Karakorum and Hindu Kush, pp.235-255.

Le Fort, P. (1986) The 500 Ma magmatic event in Alpine southern Asia, a thermal episode at Gondwana scale. Evolution des Domaines Orogeniques d'Asie Meridionale, 47, 191-209.

Le Fort, P., Cuney, M., Deniel, C., France-Lanord, C., Sheppard, S.M.F., Upreti, B. N. and Vidal, P. (1987) Crustal generation of the Himalayan leucogranites. Tectonophysics, v.134(1-3), pp.39-57. doi:10.1016/00401951(87)90248-4

McMahon, C.A. (1881) Note on the section from Dalhousie to Pangi via Sach Pass. Rec. Geol. Surv. India, v.14, pp.305-310.

Miller, C., Thöni, M., Frank, W., Grasemann, B., Klötzli, U., Guntli, P. and Draganits, E. (2001) The early Palaeozoic magmatic event in the Northwest Himalaya, India: source, tectonic setting and age of emplacement. Geol.Magz., v.138(3), pp.237-251.

Mukherjee, P.K., Purohit, K.K., Rathi, M.S. and Khanna, P.P., (1998) Geochemistry and Petrogenesis of a Supracrustal Granite from Dalhousie, Himachal Himalaya. Jour. Geol. Soc. India, v.52, pp.163-180.

Nautiyal, S.P., Dhoundhial, D.P., Nadgir,B.B., Das Gupts, S.P. and Ramachanndra, A.V. (1952) Suitability of the Dharakot Limestone for Portland cement manufacture, Kangra, H.P. Rec. Geol. Surv. India, v.87(4), pp.707–750.

Patino Douce, A. E. (1997) Generation of metaluminous A-type granites bylow-pressure melting of calc-alkaline granitoids. Geology, v.25(8), pp.743746. doi:10.1130/0091-7613.

Patino Douce, A. E. (1999). What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geol.Soc. London, Spec. Publ., v.168(1), pp.55-75. doi:10.1144/GSL.SP.

168.01.05

Patino Douce, A.E. and Beard, J.S. (1996). Effects of P, f(O2) and Mg/Fe ratio on dehydration melting of model metagreywackes. Jour. Petrol., v.37(5), pp.999-1024.

Rollinson, H.R. (2014) Using geochemical data: evaluation, presentation, interpretation. Routledge

Satyanarayanan, M., Balaram, V., Sawant, S.S., Subramanyam, K.S.V. and Krishna, G.V. (2014) High precision multielement analysis on geological samples by HR-ICPMS. In 28th ISMAS Symposium Cum Workshop on Mass Spectrometry. Indian So. Mass Spectrometry, Mumbai, India, pp.181-184

Singh, S. and Jain, A.K. (1996). Ductile shearing of the Proterozoic Chor Granitoid in the Lesser Himalaya and its tectonic significance. Jour. Geol.Soc. India, v.47(1), pp.133-138.

Singh, S. and Jain, A.K. (2003). Himalayan granitoids. Jour. Virtual Explorer, v.11, pp.1-20.

Singh, J. and Johannes, W. (1996) Dehydration melting of tonalites. Part I.

Beginning of melting. Contrib. Mineral. Petrol., v.125(1), pp.16-25.

Singh, S. (2003) Conventional and SHRIMP U-Pb Zircon Dating of the Chor Granitoid, Himachal Himalaya. Jour. Geol. Soc. India, v.62, pp.614626.

Singh, S. (2005) A review of U–Pb ages from Himalayan Collisonal Belt.Jour. Himalayan Geol., v.26, pp.61-76.

Singh, S., Barley, M.E., Brown, S.J., Jain, A.K. and Manickavasagam, R.M. (2002) SHRIMP U–Pb in zircon geochronology of the Chor granitoid: evidencefor Neoproterozoic magmatism in the Lesser Himalayan granite belt of NW India. Precambrian Res., v.118, pp.285-292. doi:10.1016/ S0301-9268(02)00107-9

Sun, S.S. and McDonough, W.S. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc., London, Spec. Publ., v.42(1), pp.313-345.

Sylvester, P.J. (1998) Post-collisional strongly peraluminous granites. Lithos, v.45(1-4), pp.29-44. doi:10.1016/S0024-4937(98)00024-3 Thakur, V.C., Rautela, P. and Jafaruddin, M. (1995). Normal faults in Panjal thrust zone in lesser Himalaya and between the higher Himalaya crystallines and Chamba sequence in Kashmir Himalaya, India. Proc. Indian Acad. Sci. EarthPlanet. Sci., v.104(3), pp.499-508.

Thirlwall, M.F. and Jones, N.W. (1983) Isotope geochemistry and contamination mechanics of Tertiary lavas from Skye, Northwest Scotland. Continental basalts and mantle xenoliths, pp.186-208.

Watkins, J.M., Clemens, J.D. and Treloar, P.J. (2007) Archaean TTGs as sources of younger granitic magmas: melting of sodic metatonalites at 0.6–1.2 GPa. Contrib. Mineral. Petrol., v.154(1), pp.91-110.

Weinberg, R.F. and Hasalová, P. (2015) Water-fluxed melting of the continental crust: A review. Lithos, v.212, pp.158-188.

Zaraysky, G.P., Alfereva, J.O. and Udoratina, O.V. (2007) Geochemical features of the tantalum deposit in Eastern Transbaikalia Etyka. In: Sixth International Hutton Symposium. Origin of granites and related rocks.Abstract. Stellenbosch, South Africa (pp. 232-233).

Zheng, Y.F., Zhou, J.B., Wu, Y.B. and Xie, Z. (2005) Low-grade metamorphic rocks in the Dabie-Sulu orogenic belt: A passive-margin accretionary wedge deformed during continent subduction. Internat. Geol. Rev., v.47(8), pp.851-871. doi:10.2747/0020-6814.47.8.851.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)