Uranium and Thorium Anomalies in the ~2.5 Ga Vendodu Leucogranite, Nellore Schist Belt, SE India and its Potential to Generate Uranium Deposits

Authors

  • School of Earth Sciences, SRTM University, Nanded – 431 606
  • School of Earth Sciences, SRTM University, Nanded – 431 606
  • School of Earth Sciences, SRTM University, Nanded – 431 606
  • School of Earth Sciences, SRTM University, Nanded – 431 606
  • School of Earth Sciences, SRTM University, Nanded – 431 606
  • Geochemistry Division, CSIR-NGRI, Uppal Road, Habsiguda, Hyderabad – 500 007
  • School of Earth Sciences, SRTM University, Nanded – 431 606
  • School of Earth Sciences, SRTM University, Nanded – 431 606

DOI:

https://doi.org/10.1007/s12594-019-1147-3

Keywords:

No Keywords

Abstract

The Vendodu intrusive, emplaced at 2483±3 Ma within the Nellore schist belt, SE India, is a K-rich per-aluminous A-type leucogranite composed of quartz and alkali feldspar (essential minerals), biotite, zircon, allanite, titanite, magnetite and apatite (magmatic accessory minerals) and muscovite, haematite, fluorite and uraninite (hydrothermal accessory minerals); zircon and uraninite could be both magmatic and hydrothermal. The Vendodu leucogranite is characterized by high Rb, Zr, Nb, Th, U and REE, low Ca, Al, Ba and Sr abundances, and large negative Eu anomalies. U content in the Vendodu leucogranite averages 17.63 ppm and is 6 to 11 times higher than average concentration of U in Upper Continental Crust (UCC) and Archaean granitoids. Similarly, Th content averages 61.38 ppm and is 3 to 20 times higher than average concentration of Th in Archaean granitoids and UCC. The U distribution in the Vendodu leucogranite is influenced by both magmatic and high-temperature hydrothermal processes. Processes that have enriched U have also increased LREE, Nb and Cr contents in the leucogranites. Geochemical proxies including Th/U, Zr/U and V/Yb suggest both magmatic and high-T hydrothermal (deuteric) enrichment of U over a wide range of temperatures and oxygen fugacities. High Th/U ratios in the Vendodu leucogranite (1.62–9.76) hint that the hydrothermal (deuteric) fluids were possibly magmatic. Petrographic and geochemical evidences suggest that the Vendodu leucogranite experienced magmatic and deuteric U enrichment that has potential to form mineralized zones either in situ or in pegmatitic veins.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2019-02-06

How to Cite

Kokandakar, G. J., Ghodke, S. S., More, L. B., Nagaraju, B., Bhosle, M. V., Sawant, S. S., … Kumar, K. V. (2019). Uranium and Thorium Anomalies in the ~2.5 Ga Vendodu Leucogranite, Nellore Schist Belt, SE India and its Potential to Generate Uranium Deposits. Journal of Geological Society of India, 93(2), 171–176. https://doi.org/10.1007/s12594-019-1147-3

References

Ballouard, C., Poujol, M., Mercadier, J., Deloule, E., Boulvais, P., Baele, J.M. and Cathelineau, M. (2017a) Uranium metallogenesis of the peraluminous leucogranite from the Pontivy-Rostrenen magmatic complex (French Armorican Variscan belt): the result of long-term oxidized hydrothermal alteration during strike-slip deformation. Mineralium Deposita, pp.1–28.

Ballouard, C., Poujol, M., Boulvais, P., Mercadier, J., Tartese, R., Venneman, T., Deloule, E., Jolivet, M., Kere, I., Cathelineau, M. and Cuney, M. (2017b) Magmatic and hydrothermal behavior of uranium in syntectonic leucogranites: The uranium mineralization associated with the Hercynian Guerande granite (Armorican Massif, France). Ore Geol. Rev., v.80, pp.309–331.

Bowden, P., Herd, D. and Kinnaird, J.A. (1995) The significance of uranium and thorium concentrations in pegmatitic leucogranites (alaskites), Rössing Mine, Swakopmund, Namibia. Communic. Geol. Surv. Namibia, v.10, pp.43–49.

Chen, J., Fan, H., Wang, S. and Gu, D. (2017) C-H-O stable isotope, elements and fluid geochemistry of uraniferous leucogranites in Gaudeanmus Area, Southern Central Zone, Damara Orogen, Namibia. Jour. Geosci. Environ. Protect., v.5, pp.1–18.

Condie, K.C. (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem. Geol., v.104, pp.1–37.

Cuney, M. (2009) The extreme diversity of uranium deposits. Mineralium Deposita, v.44, pp.3–9.

Cuney, M. (2014) Felsic magmatism and uranium deposits. Bull. Soc. Geol. France, v.185, pp.75–92.

Dhana Raju, R., and Babu, E.V.S.S.K. (2003) REE Geochemistry of the uranium phases in syn-magmatic and hydrothermal- type U-mineralisation: two case histories from India. Jour. Geol. Soc. India, v.62, pp.23–35.

Dubessy, J., Pagel, M., Beny, J.-M., Christensen, H., Hickel, B., Kosztolanyi, C. and Poty, B. (1988) Radiolysis evidenced by H2-O2 and H2-bearing fluid inclusions in three uranium deposits. Geochim. Cosmochim. Acta, v.52, pp.1155–1167.

Farley, K.N. (1994) Oxidation state and sulfur concentrations in Lau Basin basalts. In: Proc. ODP, Sci. Results, TX (Ocean Drilling Program), v.135, pp.603–613.

Förster, H.J., Rhede, D. and Hecht, L. (2008) Chemical composition of radioactive accessory minerals: implications for the evolution, alteration, age, and uranium fertility of the Fichtelgebirge granites (NE Bavaria, Germany). Neues Jahrbuch für Mineralogie-Abhandlungen: Jour. Mineral. Geochem, v.185, pp.161–182.

Hore-Lacy, I. (Ed.) (2016) Uranium for Nuclear Power: Resources, Mining and Transformation to Fuel. Woodhead Publishing, London, 448 pp.

Huang, J.H., Huang, F., Evans, L. and Glasauer, S. (2015) Vanadium: global (bio) geochemistry. Chem. Geol., v.417, pp. 68–89.

Kemp, A.I.S., Hawkesworth, C.J. (2003) Granitic perspectives on the generation and secular evolution of the continental crust. Treatise on Geochemistry, v.3, pp.349–410.

Laubier, M., Grove, T.L. and Langmuir, C.H. (2014) Trace element mineral/ melt partitioning for basaltic and basaltic andesitic melts: an experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth Planet. Sci. Lett., v.392, pp.265–278.

Leelanandam C. (1990) The Kandra volcanics in Andhra Pradesh: possible ophiolite? Curr. Sci., v.59, pp.785–788.

Mercadier, J., Cuney, M., Lach, P., Boiron, M.-C., Bonhoure, J., Richard, A., Leisen, M. and Kister, P. (2011) Origin of uranium deposits revealed by their rare earth element signature. Terra Nova, v.23, pp.264–269.

Patnaik, S., Hegde, G.N., Panneerselvam, A. Verma, M.B., Mohanty, R. and Rai, A.K. (2016) Geochemical behaviour of LREE, Y and Zr in uranium mineralized and non-mineralized granite from Darshanapur area, in the Gogi-Kurlagere fault zone, Bhima basin, Yadgiri district, Karnataka. Jour. Geol. Soc. India, v.88, pp.151–158.

Rogers, J.J., Ragland, P.C., Nishimori, R.K., Greenberg, J.K. and Hauck, S.A. (1978) Varieties of granitic uranium deposits and favorable exploration areas in the Eastern United States. Econ. Geol., v.73, pp.1539–1555.

Rudnick, R.L. and Gao, S. (2003) Composition of the continental crust. In: H.D. Holland and K.K. Turekian (Eds.) The Crust. Treatise on Geochemistry, v.3. Elsevier, Amsterdam, pp.1–64.

Saha, D. (2011) Dismembered ophiolites in Paleoproterozoic nappe complexes of Kandra and Gurramkonda, South India. Jour. Asian Earth Sci., v.42, pp.158–175.

Sarangi, A.K. and Krishnamurthy, P. (2008) Uranium metallogeny with special reference to Indian deposits. Trans. Mining Geol. Metal. Inst. India, v.104, pp.19–54.

Sesha Sai, V.V. (2009) Sheeted dykes in Kandra ophiolite complex, Nellore Schist Belt, Andhra Pradesh – vestiges of Precambrian oceanic crust. Jour. Geol. Soc. India, v.74, pp.509–514.

Simpson, P.R., Brown, G.C., and Ostle, D. (1979) Uranium mineralization and granite magmatism in the British Isles. Phil. Trans. Royal. Soc. London A, v.291, pp.385–412.

Taylor, S.R. (1987) Geochemical and petrological significance of the Archaean– Proterozoic boundary. In: T.C. Pharaoh, R.D. Beckinsale and D. Rickard (Eds.), Geochemistry and mineralization of Proterozoic volcanic suites. Geol. Soc. London Spec. Publ., v.33, pp.3–8

Vijaya Kumar, K., Reddy, M.N. and Leelanandam, C. (2006) Dynamic melting of the Precambrian mantle: evidences from rare earth elements of the amphibolites from the Nellore-Khammam schist belt, South India. Contrib. Mineral. Petrol, v.152, pp.243–256.

Vijaya Kumar, K. Ernst, W.G., Leelanandam, C., Wooden, J.L. and Grove, M.J. (2010) Geochronologic-geochemical documentation of a Paleoproterozoic suprasubduction-zone ophiolite from Kandra, SE India.

Tectonophysics, v.487, pp.22–32.

Vijaya Kumar, K. Ernst, W.G., Leelanandam, C., Wooden, J.L. and Grove, M.J. (2011) Origin of ~ 2.5 Ga potassic granite from the Nellore Schist Belt, SE India: textural, cathodoluminescence, and SHRIMP U–Pb data. Contrib. Mineral. Petrol., v.162, pp.867–888.

Whitney, D.L. and Evans, B.W. (2010) Abbreviations for names of rockforming minerals. Amer. Mineral., v.95, pp.185–187.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.