compared the Proterozoic Paleo-pole positions between Australia with those of Laurentia and suggested that Rodinia probably did not break apart until ca 650 Ma and, thus, agreeing with the stratigraphically estimated rift-drift transition time.

Some of the important themes that were presented and discussed in other technical sessions include: (i) Diversity of internal structure and geochemical compositions of Phanerozoic as well as Precambrian ophiolites, (ii) Processes of continental decrease in subduction zones and their implications on mantle dynamics, (iii) Recognition of High Pressure granulites and Ultra High Temperature (UHT) assemblages in several modern and ancient orogenic belts leading to new concepts in their tectonic histories, (iv) Growth of Archaean lower continental crust and possible arc accretionary models, (v) Study of suture zones with the aid of Zircon LA-ICP-MS U-Pb geochronology, (vi) Study of Neoprotrozoic supra subduction ophiolites along several modern orogenic belts in Asia, (vii) Magmatism, deformation and metamorphism of different craton and their implication in the reconstruction modes of supercontinent, (viii) Age constraints and Pressure-Temperature history of rocks from several collisional belts, (ix) Platinum group of elements and gold mineralization, (x) Tectonic evolution of orogenic belts, (xi) Paleo-Oceans and subduction zones, (xii) Thermal state and structure of lithosphere beneath the continent, (xiii) Constraints from Zircon U-Pb age and Hf-O isotopes, (xiv) Accretionary/collisional tectonic models and Phanerozoic orogenic belts.

The Conference was followed by a two-day field excursion mainly concentrated on the high-pressure metamorphic rocks in the Sulu Orogen of the Shandong Peninsula that provide an opportunity to see HP/UHP rocks around the Mesozoic Sulu belt and HP granulites in the Paleo-Proterozoic Jiao-Liao-Ji belt.

The delegates enjoyed the hospitality provided by a team of scientists from the Ocean University of China. The organizers deserve compliments from all the delegates for their well-planned organization.

**A Journey to Cretaceous Period – U. B. Mallikarjuna (E-mail: mallikarjunaub@rediffmail.com)**

A project to drill a 10-kilometer-deep hole in China will provide the best view yet of the turbulent Cretaceous period (Jane Qiu, A trip to Dinosaur time, Nature, v. 467, 9th Sept., 2010, pp.150-151). The core samples taken from depths of more than 2 km into the Songliao Basin in northeastern China, may give clues to one of the strangest and most dynamic ages of Earth’s history: the Cretaceous period. The cores studied so far, from depths of up to 2.5 km, have offered insight into the Cretaceous climate and its massive fluctuations in temperature, atmospheric carbon dioxide and lake levels.

The team is now hoping to muster support for a push to the very bottom of the basin, a further 7.5 km down, where the rocks should date from before the start of the Cretaceous. It is extremely rare to find a palaeolake as large and long-lived as Songliao, the geological record is in effect, appears like an encyclopedia of the Cretaceous and we just don’t have something like this any where else on the planet says Stephan Graham one of the principal investigator of the project. The team analysed oxygen and carbon isotopes in fossil crustacean shells as a proxy for ancient temperature and carbon dioxide levels, finding that atmospheric CO₂ levels doubled and then halved over 3 million years in the Late Cretaceous. The temperature plunged by more than 7°C during a 10-million-year period-possibly around the Cretaceous ‘super greenhouse’ when global temperatures were substantially higher than today.

It is assumed that the cores recovered from the Songliao basin may also shed fresh light on a contentious scientific debate: whether a large ice cap, half the size of the modern Antarctic ice cap, existed during a period as hot as the Cretaceous super greenhouse. The cores may answer pressing questions about the K/Pg extinction, which many researchers believe was caused by an asteroid or comet strike at Chicxulub on Mexico’s Yucatan Peninsula, and the climatic aftershock. Most of the samples corroborating the theory have come from marine sediments. A terrestrial record at Songliao could reveal how the asteroid strike affected like on land, at a huge distance from the impact. Sediment cores from Songliao will help to build a more complete picture of those extraordinary events says Christian Koeberl, another principal investigator of the Songliao project. The second phase of the drilling, an extra 7.5 km, is contingent on further funding. The investigators hopes that this project will result in better understanding of the geological composition and sedimentation processes of the basin during Cretaceous period.

In India, we have also huge deposits of Cretaceous sediments in the Cauvery and other basins that may throw light on geological composition and sedimentation processes if we take a project like Songliao.